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ABSTRACT 

One approach to avoid timing faults in hard, real-time systems is to make available 

intermediate, imprecise results produced by real-time processes. When a result of the desired 

quality cannot be produced in time, an imprecise result of acceptable quality produced before%he 

deadline can be used. This paper discusses the problem of scheduling periodic jobs to meet 

deadlines on a system that provides the necessary programming language primitives and run- 

time support for processes to  return imprecise results. Since the scheduler may choose to 

terminate a task before it is completed, causing i t  to produce an acceptable but imprecise result, 

the amount of processor time assigned to any task in a valid schedule can be less than the 

amount of time required to complete the task. A meaningful formulation of the scheduling 

problem must take into account the overall quality of the results. Depending on the different 

types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N 

jobs, the effects of errors in results produced in different periods are not cumulative. A 

reasonable performance measure is the average error over all jobs. Three heuristic algorithms 

that lead to feasible schedules with small average errors are described. For type C jobs, the 

undesirable effects of errors produced in different periods are cumulative. Schedulability criteria 

of type C jobs are discussed. 
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I. INTRODUCTION 

In a hard real-time system, a timing fault is said to occur when a real-time process delivers 

its result too late. A new approach, called the imprecise computation approach, was proposed 

recently as a means to avoid timing faults in hard real-time systems [l-31. The intent of this 

approach is to provide timely but possibly degraded real-time services by making results that are 

of poorer quality available when the desired result cannot be obtained in time. Instead of 

providing a primary version and an alternate version of each real-time service as suggested in [4], 

this approach relies on making effective use of intermediate results returned by prematurely 

terminated real-time processes. 

Specifically, in the imprecise computation approach, real-time processes are designed to 

have monotone property; a process is said to have this property if the accuracy of its intermediate 

result is non-decreasing as more time is spent to obtain the result. Such a process is called a 

monotone process. Practical examples of monotone processes include well-designed iterative 

processes and multiphase processes (e.g. see [5-101). It is reasonable to assume that the result 

produced by a monotone process upon its normal termination is the desired result; this result is 

said to be a precise one. External events such as timeouts, interruptions, or crashes may cause 

the process to terminate prematurely. If the intermediate result produced by the process upon 

its premature termination is saved and made available, the application may still find the result 

usable and, hence, acceptable; such a result is said to be an imprecise one. In the imprecise 

computation approach, run-time system support is provided to  record intermediate results 

produced by each real-time process at appropriate instances of the process’s execution. 

Programming language primitives are provided to allow the programmer to specify the 

intermediate result variables to be recorded and the time instants to record them so that the 

resultant process is monotone. These primitives also allow the programmer to define a set of 

error indicators. The values of the error indicators are made available to the application process 

aIong with the intermediate resuIts. By examining these error indicators, the application process 

can decide whether an intermediate result is acceptable when the desired, precise result cannot be 

obtained in time. A systems based on the imprecise computation approach is described in (1-21. 

- 

1 



This paper is concerned with the problem of scheduling periodic jobs to meet deadlines on 

systems based on the imprecise computation approach. This problem differs from the traditional 

scheduling problems Ill-131 for the following two reasons: (1) The scheduler may choose to 

terminate a task before it is completed, causing it to produce an acceptable but imprecise result. 

Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less 

than the amounts of time required to complete the tasks. (2) A meaningful formulation of this 

problem must take into account the quality of the results. Depending on the undesirable effects 

caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in 

results produced in different periods are not cumulative. The average error over all jobs to be 

scheduled is used as the criterion of optimality. Three heuristic algorithms that lead to feasible 

schedules with small average errors are described,. and their performance is discussed. For type 

C jobs, the undesirable effects of errors produced in different periods are cumulative. We are 

concerned with the criteria that can be used to determined whether a set of type C jobs can be 

scheduled to meet all deadlines. 

The rest of this paper is organized as follows: Section 11 provides the background, 

definitions and assumptions that are needed in subsequent sections. Section 111 discusses the 

problem of scheduling periodic jobs to meet deadlines making use of imprecise results. The types 

of jobs and the appropriate performance measures are defined. Section IV describes a class of 

heuristic algorithms based on the rate-monotone algorithm [14] for scheduling type N jobs. 

Section V discusses the schedulability criteria for two special classes of type C jobs. Section VI is 

a summary. 

11. BACKGROUND AND ASSUMPTIONS 

This section defines rigorously the errors in computation results and discusses means to 

return imprecise results. In a system that supports imprecise computations, the intermediate 

results generated by each server process are recorded at appropriate instants. The exact manner 

in which the recordings are done is not important to us. One way is to use the process structure 

and the language primitives provided by Concord [l-21. In Concord, a server type is defined for 

each real-time service provided by the system. Each (instance of a) server (type) is split into a 
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callee and a supervisor. A client (caller) invokes a service by sending an invocation request to the 

supervisor of the server providing the service. When the supervisor receives the invocation 

request, it  initializes the callee and requests the system to schedule the callee’s execution. The 

supervisor executes concurrently with and monitors the progress of the callee and records the 

intermediate results produced by the callee. The intermediate result variables to be recorded and 

the instants at which they are recorded are specified by the programmer using an imprecise 

r e t u r n  statement in the callee procedure. In particular, the supervisor records the variables 

specified as parameters in each imprecise return statement whenever the statement is executed. 

In addition to  the intermediate result variables, a set of error indicators is also specified in each 

imprecise return statement. When the callee terminates normally, the result returned by it is 

passed to the client through the supervisor. If the callee terminates prematurely, the supervisor 

passes to the client the latest recorded values of the intermediate result variables and error 

indicator variables. Based on the values of error indicators the client can decide whether the 

intermediate result is acceptable. 

In this paper, our attention is confined to  the problem of scheduling periodic jobs on a 

tight-coupled multiprocessor system. Communication delays between clients and servers are 

assumed to be negligibly small. The task of assigning processors to execute invoked procedures is 

carried out by a scheduler. When the execution of a procedure is preempted by the scheduler to 

be resumed later, no result is returned to the client. A result is returned only when the callee 

procedure terminates either normally or involuntarily. The latter occurs when the scheduler 

terminates the callee procedure. 

Again, we are concerned only with processes that have the monotone property: the precision 

of the result produced by the continued execution of a process with this property is 

monotonically non-decreasing. More specifically, we define the correctness C of the result R 

produced by a process P to be the extent to which the execution of P has progressed to produce 

the result. When R is not acceptable, C has the value 0; the error E is 1. When R is precise, C 

has the value 1; e is 0. Let r be the time required for the process to terminate normally and m be 

the minimum time required to produced an acceptable result. When a monotone process has 
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executed for t units of time, the error E in its result is given by 

if t < m  
if m < t < r  
if t > r  

where e ( t )  is in the range (0,l)  and e ( t l )  2 e (  t z )  for m s t , < t z L r .  

III. JOBS TYPES AND PERFORMANCE MEASURES 

A workload model commonly used in studies on scheduling hard real-time jobs is the 

periodic-job model (14-231. (From this point on, the terminology commonly used in studies on 

scheduling disciplines is used.) In this model, we are given a set J = {Jk}  of K jobs. Each j o b  J k  

is an independent unit of computation and consists of a periodic sequence of tasks Tk,j for 

j=1 ,2 ,3 ,  - . The execution time of any task Tk,i in Jk,  denoted by rk, is the amount of 

processor time required to complete the task, i.e. for the task to  execute until its normal 

termination. Let a k , j  be its ready fime before which its execution cannot begin. Its deadline is 

the time instant at or prior to which i t  must produce an acceptable result. In particular, the 

deadline of the task Tk,i is the ready time of the task Tk,j+l. Let p k  = a k , j + l  - e t k , i  be the 

repetition period of the job Jk and t k  = 1 / P k  be its repetition rate. The job Jk is, therefore, 

specified by the %tuple (Pk,rk). Let p be the least common multiple of the periods p k  for 

k = l , 2 ; . . K a n d r = l / p .  

The problem of scheduling tasks to  meet deadlines on a system that allows tasks to be 

terminated before they are completed, producing imprecise results, differs from the traditional 

scheduling problems in the following way: It is possible for the total processor time assigned to a 

task in a valid schedule, referred to  as its assigned time, to be less than its execution time. 

Hereafter, by a (valid) schedule we mean one in which the assigned time of every task Tk,i is a t  

least equal to mk, the minimum amount of processor time required to produce an acceptable 

result. We refer to mk as the minimal ezecution time of the tasks in job Jk.  A schedule in which 

the assigned time of every task is equal to its execution time is called a precise schedule. (We 

note that only precise schedules are valid schedules in the traditional sense.) If the assigned time, 
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denoted by u, of a task is equal to its execution time r, the error in the result produced by the 

task is zero. If its assigned time is less than its execution time (corresponding to involuntary 

termination of the task), the error E (  a) in its result is a non-increasing function of c. We 

consider here only preemptive schedules. Again, the result produced by any task is returned to 

the client only at the time when the task terminates, either normally when it attains 7 units of 

processor time or involuntarily when its deadline is reached. 

The term feasible schedule of the job set J refers to a schedule in which every task meets its 

deadline. In a feasible schedule, the total processor time assigned to every task prior to its 

deadline is equal to or larger than its minimal execution time. The problem of finding a feasible 

schedule of periodic jobs without taking errors in the results into consideration is a relatively 

easy one. - Given a job set J, we define a periodic job set F ={ Fk } in which the job Fk is 

specified by (Pk, mk). In other words, Fk has the same repetition rate as Jk but consists of tasks 

with execution time mk. The tasks in Fk have the same ready times and deadlines as the 

corresponding tasks in Jk. The problem of finding a feasible schedule of the job set J is the same 

as the problem of finding a precise feasible schedule of the job set F. Known results [14-231 can 

be applied directly here. 

A more meaningful formulation of the scheduling problem on a system that supports 

imprecise computations must take into consideration the quality of the results produced by the 

tasks. For this reason, we want to find algorithms leading to feasible schedules that keep some 

cost functions of errors small. 

To  motivate our choices of performance measures, we note that for different types of jobs, 

errors in the results cause different undesirable effects. As an example, consider a job consisting 

of tasks that periodically receive, enhance, and transmit frames of video images. The effect of 

the error in the- imprecise result generated in a period is a reduction in the quality of the 

transmitted image in that period. This undesirable effect is tolerable for many applications. 

Hence, no timing fault occurs as long as sufficient processor time is assigned to every task before 

its deadline so that  a frame of acceptable quality is transmitted on time. For applications such 

as this one, errors in the results produced in different periods do not have cumulative effect. We 
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refer to jobs of this type as type yon-cumulative) jobs. 

A reasonable performance measure for type N jobs is the average error of all results. Given 

a feasible schedule of the job set J, the average error is defined as follows: Let the error in the 

result produced by the task T k , j  be denoted by f k  ( a k , ,  ) when its assigned time is uk,,. Let Qk 

be the number of consecutive periods over which the average error of job Jk is computed. At  any 

time s beyond the deadline of the ( i  +Qk -2)th task but before the deadline of the 

( i + Qk - 1)th task in Jk for some i ,  the average error of Jk is 

where ak,c is the processor time attained by the current task Tk,i+QL-l a t  time s .  Let Ek (s-) 

be the contribution to the average error of Jk by errors in the results produced during the Qk -1 

periods prior to s. This equation can be rewritten as 

We may choose to compute the average error over a time interval of duration q p ,  an integer q 

times the least common multiple p of all repetition periods. In this case, the average error of Jk 

is approximately equal to 

The average error over all jobs in J is 

K 

K 

k=1 
where wk are non-negative constant weights and wk = 1. (These weights reflect the relative 

importance of different jobs.) Given a set of type N jobs, we want to find feasible schedules that 

have the minimum average error E among all feasible schedules of J . 

As an example of a different type of applications, suppose that we have a periodic job in 

which each task processes the radar signal returned from a tracked target and generates the 



coordinates and the velocity of the target for display purposes. When a task terminates 

prematurely, it  produces coarse estimates of the target position and velocity in that period. 

Typically, it  is essential that  a precise result be obtained every now and then. For example, the 

position of the target must be accurately displayed every 30 seconds. Hence, if the results 

produced by the position computation tasks in several consecutive periods are imprecise, the task 

in the next period must complete normally and produce a precise result. Otherwise, a timing 

fault occurs. We refer to  jobs of this type as type C(urnulative) jobs. A reasonable formulation of 

the scheduling problem for type c jobs is as follows: Let the cost a( ' k  ( a k , j  ) )  be a monotone 

non-decreasing function of the error c k  ( g k , j  ). At any time s between the deadlines of Tk, and 

Tk, II +1, let the cumulative cost due to errors of Jk be 

where Tk,l  (1  < n) was the last task in Jk that terminated normally and produced zero error, and 

g k ,  at time s. Clearly, a timing fault 

occurs whenever the assigned time of any task is less than mk. A timing fault occurs also when 

the cumulative cost 7k exceeds an upper limit and the deadline of current task Tk, +1 is reached 

before it attains rk units of processor time. The scheduling problem we want to consider is: given 

a set of jobs, find a schedule in which there is no timing fault. 

is the processor time attained by the current task Tk, 

N. HEURISTIC ALGORITHMS FOR TYPE N JOBS 

This section describes three heuristic algorithms for type N jobs and discusses their 

performance. These algorithms are based on the rate-monotone algorithms [ 14,151. Specifically, 

we first use either the rate-monotonic next-fit algorithm or the rate-monotonic first-fit 

algorithm [15] to assign individual jobs in the given set J to the processors in a multiprocessor 

system; jobs in J are sorted in the order of increasing period lengths and are assigned to 

processors on next-fit or first-fit basis. In deciding whether a job can be assigned to (i.e. can fit 

on) a processor, we use the minimal execution time of its tasks instead of the execution time to 

compute the utilization factors as follows: Let the minimal utilization factor of the job Jk be 

uk = rk mk. Suppose that n jobs with a total minimal utilization factor u are already assigned to 

7 



a processor. If an addition job with repetition rate r ,  execution time 7, and minimal execution 

time rn is assigned to this processor, the total minimal utilization factor of the n +1 jobs is 

u + r m. This job is assigned to the processor only if 

We note that these n + 1 jobs are not precisely schedulable on the processor in general. However, 

they are schedulable if the assigned time of every task is equal to its minimal execution time [14]. 

We now assume that jobs are assigned to processors as described above and confine our 

attention to the problem of scheduling periodic jobs on a single processor to meet all deadlines 

while keeping the average error of all jobs on the processor small. The mixed scheduling 

algorithms described below use the rate-monotone algorithm to ensure that all deadlines are met 

but use different strategies to improve result quality. They work as follows: Given a set J of K 

jobs with a total minimal utilization factor equal to or less than K ( 2'IK - 1 ) to be scheduled on 

a processor, we define two job sets, the f i rs t  set F and the last set L. For each job Jk = ( p k ,  Tk ) 

in J, there is a job Fk = ( P k ,  mk ) in the first set F. In particular, the task Tk,j(F) in the job Fk 

is the first portion of the task Tk, j  in Jk, and the execution time of Tk,,(F) is mk for all j .  

Similarly, for each job Jk in J, there is a job Lk = (pk,?k -mk ) in the last set L. The task 

Tk,j(L) in the job Lk is the last portion of the task Tk,i in Jk, and the execution time of Tk,j(L) 

is ?k -mk. Furthermore, the ready times and deadlines of the tasks Tk, , ,  Tk , , (F) ,  and Tk , , (L )  

are the same. Instead of the job set J, we schedule the sets F and L using the following 

preemptive, priority-scheduling strategy. 

Theorem W-1: All jobs in F are assigned higher priorities than jobs in L and are 

precisely scheduled according to the rate-monotone algorithm. This strategy of scheduling jobs 

in J guarantees that all deadlines are met regardless how tasks in L are scheduled. 

Proof: Because 

this strategy ensures that all tasks in F complete before their deadlines independent of how tasks 
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in L are scheduled (141. For every schedule of F and L obtained in this manner, there is an 

equivalent schedule of jobs in J in which the assigned time of every task is at least equal to its 

minimal execution time. Therefore, the theorem follows. rn 

‘ Jl  

J 2  

J 3  

J 4  

Figure 1 shows an example in which the job set J consists of 4 jobs. They are (2, l), 

(4, 0.5), (5, 0.5) and (6, 1.5) and have minimal execution times 0.5, 0.2, 0.1 and 1.0, respectively. 

The total utilization factor of the job set J is equal to 0.975. J is not precisely schedulable 

1 1 t 1 I 

I 1 I 1 

I 1 I I 

I 1 
ii 

0 1 2 3 4 5 6 7 8 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Time t I  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Figure la. A precise rate-monotone schedule 

J l  

J 2  

J 3  

J4  

Figure lb. A feasible schedule - an example on scheduling of type N jobs. 
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according to  the rate-monotone algorithm as shown in Figure la. (The deadline of T4,1 is missed 

at time 6.) However, the first set F consists of (2, 0.5), (4, 0.2), (5 ,  0.1) and (6, 1.0) with a total 

utilization factor 0.4867; i t  is guaranteed to be precisely schedulable according to the rate- 

monotone algorithm. Figure l b  shows a rate-monotone schedule of F. Black bars in Figure l b  

indicate the time intervals during which the spared processor time is assigned to jobs in the last 

set L, consisting of (2, 0.5), (4, 0.3), (5, 0.4) and (6 ,  0.5). 

In general, the fraction of processor time used to execute tasks in F is at most equal to 

K ( 21/K - 1) (e.g, 0.82 for K =1 and In2 for large K).  Whenever there is no task in F to  be 

executed, the spared processor time can be used to execute tasks in L to improve the quality of 

the results. The algorithms described below differ in how priorities are assigned to jobs in L. 

N.l. The Leaat Utiliration Algorithm 

To see how priorities should be assigned to jobs in L so that the average error is kept small, 

let us first consider the special case of linear error functions given by 

From Eqs. (2) and (3), the average error of the job set J over a time interval of length q p  is 

given by 

where 

is the total processor time assigned to all tasks in Lk over qprk periods, and 

Without loss of generality, let the jobs be indexed so that 
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K K 

k=l k-1 
Since 0 5 a k ( L )  for k = 1,2, * * * K and ak(L) 5 q p ( 1 - rk mk ), the sum in the 

right hand side of Eq. (6) is maximized (or E is minimized) when g , (L)  is made as large as 

possible. For a given value of a,(L), E is minimized by making a,(L)  as large as possible and so 

on. This suggests the following algorithm, referred to as the least utilization algorithm. It is 

preemptive and priority-driven. Given a job set J, we divide it into the first set F and the last 

set L as defined above. All jobs in F are assigned higher priorities than the jobs in L. Priorities 

of the individual jobs in F are assigned statically on rate-monotone basis, i.e., jobs with higher 

repetition rates are assigned higher priorities. Priorities of jobs in L are assigned also statically 

but according to their values of the ratio wk / vk; the larger this ratio is, the higher the priority. 

(When all jobs in J have the same constant wk and minimal execution time mk, jobs with smaller 

utilization factors are assigned higher priorities and, hence, the name of this algorithm.) At any 

time when there is no task in the first set F to  be executed, the processor is assigned to jobs in 

the last set L on preemptive, priority-driven basis with L, having higher priority than L,, L ,  

having higher priority than L ,  and so on. 

For illustrative purpose, we consider the example shown in Figure 1. Suppose that wk = 

114 for k = 1, 2, 3 and 4 and q = 1. Since V ,  = 0.25, V, = 0.075, V, = 0.08 and V, = 0.083, 

the priorities assigned to L,, L,, L ,  and L ,  according to the least utilization algorithm are 4, 1, 2 

and 3, respectively, with a smaller number denoting a higher priority. The total assigned time to 

jobs L,, L,, L ,  and L ,  in p = 60 units of time are a l ( L )  = 10.0, a2(L) = 4.5, u3(L)  = 4.8 and 

a4(L)  = 5.0. The average error over 60 units of time is 0.0833. 

Let 

K 
u = Tk r k  

k = l  



K 

be the total utilization factors of the jobs in J and F, respectively. Let the jobs be indexed so 

that (8) is true. When U > 1, there exists an integer i such that 1 5  i <K and 

I i+l 

The average error has the following lower bound when the error functions are linear as given by 

Eq. ( 5 )  and the least utilization algorithm is used. 

Theorem IV-2: 

i 
W i + l  

c+l k-1 

i 
1 -  2 wk +-( V . - l + u )  if U > I  

if U s 1  E, 2 { '=' 

where the index i is defined by (10). Furthermore, this bound is tight. 

Proof: In a time interval of length q p units, the processor is assigned to jobs in the first set F 

for q p mk f k  = q p u units. q p ( 1 - u ) units of processor time are available to be assigned to 

jobs in the last set L. We consider the following two cases: 

K 

k = l  

(i) U > 1. In this case, an optimal assignment is one in which the assigned time of every 

task in Lk is rk - mk for k = 1,2, - * i and the remaining processor time is assigned to tasks in 

the job L i + l .  For this assignment, 

From Eqs. (6) and (7b) we have 
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(ii) U 5 1. An optimal assignment is one in which the assigned time of all tasks in L k  is 

rk -mk for d l  k = 1,2, * - - K .  In other words, 

for all k. From Eqs. (6) and (7b) 

In both cases, the equality holds for any set of jobs in which all jobs have the same repetition 

period p .  The case of U > 1 is illustrated by Figure 2. I 

In the special case of K identical jobs with wk = 1 / K  and vk = t k  (rk -mk ) = 

(U - u)/K, we have 

Corollary W-1: 

( U - l ) / ( U - u )  if U > 1  
E = {  if U s 1  

Figure 2. An example on a set of jobs for which bound (11) is tight. 



Proof: We consider the case when U > 1 in the following; for U 5 1 it is obviously that E = 0. 

From Eq. (6) and Theorem IV-2, we have 

This average error is achieved by assigning all tasks in L equal amount of processor time. 

Corollary IV-1 states that  as long as U 5 1, the least utilization algorithm can schedule all 

identical jobs to meet deadlines while keeping the average error zero. In other words, the least 

utilization algorithm is optimal, like the earliest deadline first algorithm [14], for identical jobs. 

However, the earliest deadline first algorithm cannot respond dynamically to change in load 

conditions; sudden increases in the execution time of any job and additions of new jobs tend to 

cause timing faults when U is close to 1. The least utilization algorithm can respond to these 

changes as long as the first set remains to be schedulable according to the rate-monotone 

algorithm. 

Unfortunately, the spared processor time that is available after all ready tasks in F are 

assigned is not always be used in an optimal manner by the least utilization algorithm to reduce 

average error. An example illustrating this situation is shown in Figure 3. In this example, there 

are three jobs, J ,  = (3, 0.9), J2 = (2, 0.8) and J3 = (1, 0.6). The minimal execution time of all 

. .  

- T i , j ( F )  ' - T i , j ( L )  

Figure 3. An example on suboptimal use of processor time to reduce average error. 
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jobs is 0.2 and V ,  = 0.233, V2 = 0.3 and V3 = 0.4. The last set L consists of (3, 0.7), (2, 0.6) 

and (1, 0.4), and the priorities are 1, 2 and 3, respectively. Figure 3 shows a schedule obtained 

using the least utilization algorithm. Note that T2, , (L)  is not completed and only T3,6(L) among 

all T, , j (L ) ' s  is assigned any processor time. Yet the processor is left idle during the last 0.3 units 

of time before the deadline of T3,6. 

In general, the worst case average error depends on the parameters of the jobs. To 

illustrate how the worst case average error depends on these parameters without getting 

hopelessly lost in complicated notations, we consider here the simply periodic case [24]. A set of 

jobs J is said to be simply periodic if every repetition rate is an integral multiple of the next 

smaller rate (and thus of all smaller rates). 

Theorem N-3: Consider a set J of simply periodic jobs with U > 1. Let the jobs be 

indexed so that (8) is satisfied. When p = p ,  > P 2  > - . .  > P K ,  

P i  
8; = p i  - C - r n k > s i - m i  i = l , 2 , - - *  K 

k=i  p k  

the error functions are linear as given by Eq. (5), and the least utilization algorithm is used, 

where [ z 1 denotes the smallest integer that is equal to or larger than 2, and i is the smallest 

index satisfying inequality 

Proof: Let u k ( L )  - denote the worst case total assigned time of the tasks T k , j ( L )  in L k  during 

the time interval of length q p over which the average error is computed. To  find - u k(L) ,  we 

examine the first p l  l p k  periods 6f Jk for k = 1, 2, - - K .  

During the first period (and subsequent periods) of J ,  of length p l ,  the amount of spared 

processor time S ,  after completing all tasks in the first set is s 1  as defined in (12) since there are 
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p 1  / P k  ready tasks in Fk in this period. Because L l  has the highest priority among all Lk'S, we 

have - a l ( L )  = q(Tl -ml )  = q p  V,. 

Because of the way in which priorities are assigned, at least p ,  / p k  tasks in Fk, one task in 

F, and one task in L l  are completed before any processor time is assigned to the task T, , , (L)  in 

L ,  during the first period of J,. The spared processor time during this period that can be 

assigned to T2,1(L)  is S, = 9, -7,. There are the following three cases: (i) If S, 2 7, - m2, we 

have - u , (L)  = q p V,. (ii) If 0 < S, < r2 - m,, all S, units of processor time in the first period 

of J ,  is assigned to T2,1(L).  The assigned time of the tasks T 2 , j ( L )  is r t -m2  during the 

subsequent ( p1 / p 2  -1 ) periods. Hence 

(13) 1 P 1  u2 (L)  = q S ~ - T ~ + (  - - 1 ) ( r 2 - r n 2 )  I P z  

(iii) If S, < 0, the execution time of T, , , (L )  is larger than s2 -ml .  There is no spared processor 

time available to be assigned to the tasks in L ,  during its first [ T~ / s2 1 - 1 periods. 

I P 1  
u,(L)  = Q r . 1 / s Z l ~ 2 - 5 + ( - - -  - r~l/S,l)( . ,-m,) I P 2  

(Note that Eq. (13) is a special case of this expression when [ T ~  / s 2 ]  = 1.) MAreover, 

and - u k ( L )  = 0 for k = 3, 4, - * - K. 

Suppose that the spared processor time during every period of Li-l after completing all 

ready tasks in F and L,,  L,,  - * - , Li-, is larger than T ~ - ~  - miL1, Le., 

s. , = s. , -r 1 - 7 , -  . . .  - ridl < T,. -mi  

We have 
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k = l , 2 ,  . . * , i - l  

Hence 

i-1 w 

We note that the inequalities in (12) implies that every task of Li can be precisely scheduled 

if Li is the only job in the last set L. This restriction places a reasonable upper limit on the total 

minimum utilization factor and the utilization factors of individual jobs. The bound in Theorem 

N-3 can be applied to the more general case when periods of jobs in J do not have distinct 

values if jobs with the same repetition period have the same weighted utilization factor wk / V,. 

Specifically, suppose that jobs Jii, Ji,, - - - , Ji. have the same period pi and weighted utilization 

factor w i / V i .  These jobs can be clustered together as one job with minimal execution time 
I 

mi = rn. + m .  + * * - + mi. and execution time ri = ril + ri2 + * * * + Ti . 
'1 '2 J j 

W . 2 .  Other Heuristic Algorithms 

In general, the underlying procedure may not converge linearly, and the error in the result 

produced by a task does not decrease linearly as its execution continues. We consider two 

additional algorithms that keep the average error small for general error functions. Again, they 

differ from the least utilization algorithm only in how priorities are assigned to jobs in the last 

set L. 

17 





. 
When the behavior of the error function is not known, we may want to use an algorithm 

that  attempts to keep the average error small by making good use of slack time between the time 

instant a t  which the task in the current period first attains mk units of processor time to the 

beginning of the next period, the ready time of the next task. The lower bound on slack times 

derived in [19] provides the basis of the best d o c k  time algorithm. It has been shown that after 

the completion of the task Tk, j ( F ) ,  the slack time to the ready time of the task Tk +,(F) is at 

least equal to the 0.207 q k , ,  where q k , j  is the length of the last quantum of processor time 

assigned to  the task T k , i ( F ) .  This lower bound on slack times of individual jobs allows us to 

bound the length of time between the instant when the processor becomes free from executing 

tasks in F and the ready time of the next task in F. When the processor is free to execute tasks 

in L, the best slack time algorithm assigns the highest priority to the job with the largest slack 

time. 

V. SCHEDULING TYPE C JOBS 

We consider here a case of practical interest where the cost function ( z ) in Eq. (4) is equal 

to  1 for z >O and is equal to zero for z =O. For this cost function, requiring that the cumulative 

cost remains under an acceptable upper limit is the same as requiring that at least one task 

among the tasks Tk, in several consecutive periods of each job Jk be completed normally and 

produces a zero error. Specifically, a schedule for such a set of type C jobs is said to be a feasible 

schedule if (i) the assigned time of every task in Jk is at least equal to mk and (ii) the assigned 

time of at least one task among every Qk consecutive tasks in Jk is equal to T k .  We refer to Qk 

as the cumulation rate of Jk. A set J of (type C) jobs is said to be schedulable if there exists a 

feasible schedule of J. 

V.l. Scheduling Jobs with the Same Repetition Period and Cumulation Rate 

We consider now the special case when all jobs in the given set J have the same repetition 

period p and the same cumulation rate 2 Q - 1. Given such a set of K jobs, we define a first set 

F as in Section III; for each job J k  = ( p ,  ?k ) in J, there is a job Fk = ( p ,  mk ) in F. Figure 4 

illustrates the problem of scheduling the jobs in J. During each period, mk units of processor 
K 

k-1 
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Figure 4. Scheduling of type C jobs with the same repetition period. 

K 

k = l  
time are assigned to the current tasks of Fk for all k .  p - mk units of processor time are 

available each period and can be used to complete some tasks in J. Let R = { R , }  denote a set of 

K independent tasks defined as follows and is referred to as the remaining set  : for each job in J, 
there is a task with execution time (rk -mk) in R. We note the following. 

Theorem V-1: The problem of finding a feasible schedule of the job set J with repetition 

period p and cumulation rate 2 Q - 1  is the same as finding a non-preemptive, precise schedule of 

the remaining set R on Q processors with completion time equal to or less than p - 
K 

k-1 
mk. 

Proof: We segment the time into intervals of Q periods each. For every job Jk, if one task is 

completed normally in each interval, i.e. has assigned time rk, then at least one task in each 

consecutive 2 Q - 1 periods is completed. 

K 

k-1  
To find a feasible schedule, we assign the first mk units of processor time at the 

beginning of each period to the current tasks in the first set. To complete one task in every job 

Jk every Q periods, the remaining portion of the task must be scheduled precisely in one of the 

Q periods. The execution time of this portion is Tk -mk.  The statement of the theorem follows. 

m 

Since the problem of finding optimal, non-preemptive, precise schedules of independent 

tasks to meet uniform deadline on Q processors is NP-complete [25 ] ,  it follows from Theorem 

V-1 that the problem of finding optimal feasible schedules (e.g. with the smallest possible 

cumulation rate) of type C jobs with identical repetition period and cumulation rate is also NP- 
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complete. We consider now the following heuristic algorithm, called the fength monotone 

algorithm: In the beginning of every period, the current task in Fk is assigned ??zk units of 

processor time for all k = 1, 2, * K. The remaining set R is then scheduled precisely in the Q 

intervals, each of length p - mk, using the first-fit-decrecrsing (FFD) algorithm [26]. In other 

words, the tasks in R are sorted so that  their execution times rk - mk are in decreasing order; 

these tasks are assigned to  the Q intervals on first-fit-decreasing basis. 

K 

. k-1 

Jl 

~z 

J3 

J4 

JS 

Figure 5 shows an example in which the set J consists of 5 jobs. They are (1, 0.4), (1, 0.5), 

(1, 0.3), (1, 0.4) and (1, 0.2), and all have minimal execution times 0.1 and the cumulation rate 5 

(;.e., Q = 3). During each period 0.5 unit of processor time is assigned to the current tasks of F 

and 0.5 unit of processor time is available for the remaining set R. The execution times of the 

tasks in R are 0.3, 0.4, 0.2, 0.3 and 0.1, respectively. According the length monotone algorithm 

the tasks Rk are scheduled at time 1.5, 0.5, 1.8, 2.5 and 0.9, respectively. 

1 

m - I n  l l  

n n n 

n n 
n d n  I n  1 

Lemma V-1: The tasks in the remaining set R can be scheduled precisely in Q intervals 

of length equal to or less than 

Figure 5. An example on scheduling of type C jobs using length monotone algorithm. 
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using the FFD algorithm. Moreover, this bound is tight. 

Proof: Suppose that the remaining set cannot be scheduled precisely in Q intervals of length 

equal to C, using the FFD algorithm. Without loss of generality, let 

r l - m l  2 r2 -m2  2 * * * 2 rk -mk 

Let Rj be the first task in R that cannot be fit in the Q intervals. We need to consider the 

following three cases: 

(i) rj -mi > C, /2. Clearly, rk -mk > C, / 2  for k = 1, 2, * - - j-1. In other words, 

r j - m i > C U / 2 f o r 1 < i s Q + l .  Hence 

We have a contradiction. 

(ii) r, -mi = C, / 2 .  By the fact that Ri cannot fit in any of the Q intervals, more than 

C, / 2  units of time in each interval must have been assigned to tasks with total execution times 

exceeding C, / 2. Again, 

and we have a contradiction. 

(iii) rj - mi < C, /2. Let rj  -mi = X C, for some fraction X smaller than 1/2. Since Ri 

cannot be assigned to any of the Q interval of length C,, the total execution time of all tasks 

already assigned in every interval must exceed ( 1 -X)C,. Moreover, 

Since 2 - 4  X > 0 and Q 2 2, we have 
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K K 
E ( r k - m k )  > E ( r k - m k )  

k - 1  k = l  

2 x - 1  = ( l -  

Again, we have a contradiction. 

To show this upper bound is tight, we consider a remaining set R consisting of Q + 1  tasks. 

The execution time of every task is A. These Q + 1  tasks can be scheduled in Q intervals with 

length 2 A or larger. Since 

the upper bound is tight. '. 
Theorem V-2: A set J of K type C jobs of repetition period p and cumulation rate 

2 Q - 1 is schedulable (Le. a feasible schedule is guaranteed to be found) using the length 

monotone algorithm if 

where u and U are total utilization factors of F and J, respectively, as defined in Eq. (9). 

Proof: 

intervals during which processor times can be assigned to tasks in R is equal to p . -  

set of tasks in R can be scheduled precisely on non-preemptive basis if 

The proof of this theorem follows directly from Lemma V-1. The length of the Q 
K 

mk. The 
k - 1  

Dividing both sides of the inequality by p ,  we have 
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The region of the u-U plane in which the set J is schedulable is illustrated by Figure 6. 

The shaded area is the schedulable region for Q = 2 (i.e. cumulation rate 3). 

V.2. Scheduling Simply Periodic Jobs 

We consider a set J of simply periodic jobs consisting of subsets J, for k = 1, 2, * * K; all 

jobs in J, have the same repetition period p k ,  ready times and deadlines, and 

p1 < p ,  < - - * < pK = p. Suppose that one task in every job must be completed a t  least once 

every q p units of time. In other words, for every job with repetition period p k ,  at least one task 

in every (2q p / p k )  - 1 consecutive periods must be completed. We say that these simply periodic 

jobs have the same cumulation rate of q p units of time. 

Figure 7 illustrates the problem of scheduling simply periodic jobs. In this example, there 

are five jobs to be scheduled. They are J, = (1, 0.5),  J ,  = (1, 0.47), J3 = (1, 0.45), J4 = (2, 0.6) 

and J, = (4, 0.7) and have minimal execution time 0.1. In term of the notation just introduced, 

J = {J,, J,, 5,) where J, = {J,, J,, J,} ,  J, = {J,} and J, = {.I5}. Suppose that g = 1, i.e. one 

task in every job must be completed every 4 units of time. We define the first set F as in Section 

In. The remaining set R consists of three subsets, R, = {R,, R,, R,}, R, = {R,} and 

R, = {R5}. Whenever a task in F is ready, it is scheduled according to  the rate-monotone 

3.0 uk Q =5 

0 0.5 1.0 1.5 U 

Figure 6. Schedulable region. 
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n I n h - 1  

n 
n I 

Figure 7. An example on scheduling of Type C simply periodic jobs. 

algorithm. Tasks in R are scheduled in the time intervals during which the processor is not 

assigned to tasks in F. The lengths of these time intervals during the first 4 periods of J, are 0.5, 

0.7, 0.6 and 0.7, respectively. The tasks R , ,  R, and R 3  in R, have execution times 0.4, 0.37 and 

0.35, respectively. Each of these tasks must be scheduled precisely in one of the 4 intervals so 

that it  can execute from the start to finish in the interval. A reasonable heuristic is to assign the 

three tasks in R, the highest priority among all tasks in R by scheduling them first in these 

intervals using the FFD algorithm. As shown in Figure 7, R,, R ,  and R ,  are scheduled at 0.5, 

1.3 and 2.4, respectively. R4 with execution time 0.5 cannot fit in the first period of J4. It is 

scheduled at the intervals (2.75, 3) and (3.3, 3.25) in the second period of J4. Finally, R, is 

scheduled at the intervals (0.9, l .O),  (1.67, 2.0) and (3.55, 3.72) in a period of J5 

The above example suggests a natural way to  extend the length monotone algorithm so that 

it  can be used to schedule simply periodic jobs with the same cumulation rate. Again, the jobs in 

J are divided into the first set F and the remaining set R. Tasks in F are assigned higher 

priorities than the tasks in R and are scheduled according to the rate-monotone algorithm. For 

each time interval of duration q p  and for each job Ji in Jj with repetition period p j ,  there is a 

task Ri with execution time 7; -mi in Rj. This task must be scheduled precisely in one of the 

q p / p j  periods of jobs in Jj. The eztended length monotone algorithm schedules the tasks in R as 

follows: In the beginning of every period of J,, the processor is assigned to the ready tasks in F. 
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The tasks in R, are then scheduled, making use of the spared processor time in q p / p l  periods. 

Specifically, the FFD algorithm is used to assign the tasks in R, to the processor in the time 

intervals during which the processor is not busy executing tasks in F, and every task in R, is 

scheduled to fit within one period of J1. After the tasks in R, are scheduled, the spared processor 

time left in the q p/p2 periods of J, is assigned to the tasks in &, again, using the FFD 

algorithm. In general for all k 5 K, the tasks in R, are scheduled in the q p / p k  periods using 

the FFD algorithm after the tasks in R,, R,, - - Rk-l are scheduled. 

Unfortunately, the amounts of spare processor time in different periods of each job are 

different. This fact makes i t  difficult to derive analytically the condition(s) under which a set of 

simply periodic jobs is guaranteed to be schedulable using the extended length monotone 

algorithm. A simulation study is being carried out to determine the performance of this 

algorithm. 

VI. SUMMARY 

This paper discusses the problem of scheduling periodic jobs on systems that allow tasks to 

terminate prematurely and produce imprecise results. When a task terminates normally, the 

error in the result produced by it is zero. When it terminates prematurely, the result produced 

by it is acceptable as long as the duration of its execution is equal to or longer than its minimal 

execution time. Hence, to guarantee that all deadlines are met requires only that the amount of 

processor time assigned to every task prior to its deadline is at least equal to its minimal 

execution time. 

Depending on the undesirable effects caused by errors, jobs are classified as type N and type 

C. For type N jobs, the criterion used to  measure the performance of scheduling algorithms is 

the average error over all jobs. Three heuristic algorithms that guarantee to produce feasible 

schedules of type N jobs are described. Their performance depends on how errors vary as 

functions of the assigned times of the tasks. The least utilization algorithm produces suboptimal 

schedules with small average error when errors in all jobs are linearly dependent on their 

assigned times. Bounds on the average error for schedules generated by this algorithm are 
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derived. Many iteration procedures converge fasters during earlier iterations; the error is often a 

convex function of the assigned time. For this case, the least attained time algorithm should 

achieve less average error. The performance of the least attained time algorithm and the best 

slack time algorithm remains to  be evaluated. 

For type C jobs, the undesirable effects of errors produced in different periods are 

cumulative. We are concerned with the case when at least one task among every Q consecutive 

tasks in every job is required to  complete normally. The length monotone algorithm can be used 

to schedule jobs with the same repetition period and cumulation rate. A necessary condition for 

a set of jobs to be schedulable using the length monotone algorithm is found. The way in which 

this algorithm can be used to schedule simply periodic type C jobs is discussed. 
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